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1 Introduction

In R3 a collection of arbitrarily shaped small particles are embedded in an

opaque medium, and the problem is to study their size distribution. Due
to physical impediments one cannot observe the particles directly, but pla-

nar probes can be used to retrieve information on the size distribution. More

specifically, a test plane is randomly chosen from among all planes parallel to

the z-axis and intersecting the medium. The intersection of the 3-dimensional

particles with the test plane produces 2-dimensional figures. The size dis-

tribution of the 2-dimensional figures are used to make inference about the

3-dimensional size distribution of particles in the medium. Although this

seems an impossible task, we will show that for particles of certain shapes,

an exact relationship exists. Problems of this form occur in biology, materials

science, ceramics, mineralogy, metallurgy etc.

First we make two assumptions

Al. The test planes are chosen uniformly along the z-axis i.e. the prob-

ability of choosing a test plane in any interval of width 8z is the same as

for any other interval of length 8z

A2. The centers of mass of the particles are distributed according to a

Poisson process with parameter, A, where A denotes the mean number of

centers per unit volume.

If A2 holds with A sufficiently small, then for small particles we may
assume that the particles are so dilutely distributed that their positions and

orientations are independent of one another. Also, the assumption implies

that there exists a finite number of particles in any region of finite volume.

The above set-up produces a marked point process in R3
, (
C\,R

)
where

Ca, A > 0 is the Poisson process describing the centers of mass and R is a

collection of parameters describing the particle.
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2 Fundamental relation of stereology

One quantity of theoretical and practical importance in describing the size

distribution of particles, is Ny
,
the number of particles per unit volume. In

this section it is shown that the observed number of particles per unit area,

NA ,
is related to Ny via

Na = NVH
This relationship is called the fundamental relationship of stereology, and it

holds for particles of arbitrary shape, and size. H is the average distance be-

tween tangent planes over all particles in the structure, this is clarified below.

One readily sees that by cutting the medium with a random plane and

observing the 2-D images is in general ambiguous, since different orientations

of the particles about their centers of mass produce different 2-D images. To
correct for this we define a uniform distribution of orientations as follows.

Vaguely one can define for oneself the meaning to the statement, the orien-

tation of a particle about its center of mass. Specifically, what one means

by this statement is: Let (xo,yoi^0 )
denote the center of mass of the parti-

cle. Place an x,y,z coordinate axis at the (xo, yo, 2o)- By the orientations

of the particle about its center of mass, we mean the different positions the

particle takes as the axis is rotated through the angles 9 and
<f>

ranging over

0 <<£<tt, 0<<£< 2tt. See the figure below. The uniform distribution is

given by.
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The fundamental relation of stereology is now derived. Let V be a region

of finite volume, then by A2 we may assume a finite number of particles in

the region. Let

n 0

\V\

Nv

np

Na

Then

the number of particles (centers) in the region V
volume of V
number of particles per unit volume

the number of particles that intersect an arbitrary test plane A

the number of particles per unit test area

Nv

Na

n0
~\
Tip

Ml

Note that np and NA depend on the orientations of the particles about their

centers of mass. Let (0,-, <£,•) be the orientation vector for the ith particle

i = 1, . .
.

,

no. We placed a uniform distribution on the set of orientations so

(
6 { , <j>i )

is a random variable on the sphere. Therefore we write

np — np{{@li 4*1)1 * • • 1 {@n0 i 4*110)

as a random variable depending on the independent variables
( 0{,4>i ).

The problem is to find a relationship between Nv and NA • Suppose the

medium is a cube with sides of length 1. Then

V = l
3 and A = l

2

NV = 7T and N* = ^p

Consider first just one fixed particle with orientation (#, 4>) about its cen-

ter of mass. Let H(9, 4>) be the distance between parallel horizontal tangent

planes to the particle, as shown below.
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It is easily seen that under the probability distribution given by A1 the

probability that a randomly chosen plane will intersect the particle is given

by

Pr(test plane intersects particle
|
0, (f>)

i

’

Now assume that there are t types of particles with ti\ of type 1, n 2 of type

2 of type t. Let

Pij denotes the probability a randomly chosen test plane hits the

jth particle of type i given its orientation </>,_,)

then

H(0ij,<f>ij)
P'j ~

i

j = 1 , . .
. ,

n,-, i = 1 , . .
. ,

t where H{(0
, <f> )

denotes the distance between tan-

gent planes for particle i given orientation {0,<f>). Let

I _ f 1 if the ith particle of type j is hit by the test plane
13

) 0 otherwise
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Then, i,j, j = 1, . .
. ,

rc,-, i = 1, . .
. ,

t from an array of independent Bernoulli

random variables with means pfJ . That is, a particle is either on the test plane

or it is not, independent of the other particles. We have

nP = ±±Ii,
1=1 j=l

and

t n,

E[np |
($ij, <f>iji i, j] y ] Pa

»=i j-i

= 7EE *(««.*<)
1 i=l ;=1

=
^ .=1

n0
j-1

Averaging over all orientations gives

E[np] = y-E—E r r *«)/(** tijWidhj
1

*'0 Jo

= jt-r r BA*,*)™,*)****
l ~[n0 Jo Jo

Thus,

%] = y#
where if = ^ if,-(0,0) and if,- = Jo* Jo Hi(9,(f>)f{9,(/))d9d(j) denotes the

average distance between parallel tangent planes for the ith particle. The
average is with respect to orientation. Since, jjj-i = forms a distribu-

tion, then if denotes a grand average distance over all particles. If we divide

both sides of the equation

E{np]
= n
-fH
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by /
2 gives

E[np\
n0H~~~

since Nv = and NA = j§- it follows that

E[Na ]
= E[^ = ^ff = NvH

or

E[Na] = NVH
This is the fundamental relation of stereology, which is usually written

in the form

Na = NVH
which says that the average density of particles on a randomly selected test

plane is proportional to the density of particles in the medium, with propor-

tionality constant
,
H.

If the particles are spheres, then all orientations of a sphere about its

center of mass are the same and so Hi = 2Ri, the radius of the sphere. If

there are t types of particles, then they are described by t distinct radii,

Ri, i = 1 , . .
. ,

t
,
and we have from above

E[Na ]

= 2RNV

where R = ^-2Ri, the average spherical diameter. The expectation

above is taken solely with respect to Lebesgue measure. Furthermore, we
note the following. We may write

np = Y\ + • •
• + Yt

where Y, denotes the number of particles of type i on a randomly selected test

plane. The Y, are independent binomial random variables with parameters

Pi and n, By the law of large numbers

lim
| ^ - 2RNV ]

|= lim
|

E[NA )

- 2RNV |= 0
/—>oo /—t-oo
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provided min{n,} oo as l —* oo.

3 Spheres as Particles

If the particles are spheres then they can be described uniquely by their radii.

Let F(r),and /(r), r > 0 denote the unknown radii distributionand density,

respectively of the spheres, i.e.

F(r) = Pr{Rg < r}

where Ra denotes the radius of a randomly chosen sphere. Let z = zq be a

plane parallel to the z axis, then obviously, this plane induces a distribution

of circular radii given by the intersection of the spheres with the plane. Let

G(r
)
and g(r

)
be the profile size distribution and density,respectively, i.e.

G(r
)
= Pr{Rc < r}

where Rc denotes the radius of a randomly selected circle on a randomly

selected test plane.The orginal problem can be restated simply as: find a re-

lationship between F(r) and G(r), assuming that an estimate of G(r) exists.

Consider the sphere

x2 + y
2 + z

2 = R2

and let £ = zo, we get a test plane parallel to the 2— axis. If z = zq intersects

the sphere, we get the circle

x 2 + y
2 + Zq = R2

x 2 + y
2 = R2 - 2q

This induces a function

r{zQ ) = \JR
2 - zl

which denotes the radius of the circular profile cut out by the plane z = 20,

—R<zq<R. Therefore

r(Z) = VR2 - Z2
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is a random variable, where Z is the Z-coordinate of uniformly selected test

plane .

Consider just that portion of R? in the cube centered at zero and with

sides of length /. Suppose we uniformly select a test plane with — / < Z < l.

Let Rs denote the radius defined above, then

TR(r
|

R8 )
P(r(Z) < r

|

Z intersects the sphere)

P(V

R

2 — Z2 < r
|

Z intersects the sphere)

P(R2 — Z 2 < r
2

|

Z fl sphere)

P{Z 2 > R2 — r
2

|

Z fl sphere)

1 — P(Z 2 < R2 — r
2

\

Z C\ sphere)

1 — P(—V

R

2 — r2 < Z < VR2 - r 2
|

Z fl sphere)

2VR2 - r 2

2R

with density

~ RVR2 - r 2

Observe that when R3
is cut by the cube of volume /

3 we get a random

sample R[, . .
. ,
R 9

no of spherical radii R 8
. This follows since the centers of

the spheres are distributed in R3 according to a Poisson process. And, when
this cube is cut by a test plane, Z, we get a random sample from Rc

,
namely,

where = {R{, . .
. ,
Ra

no } n Z.

Suppose that the random variable R8
lies between (0, f^max]- Then also, Rc

has support (0,-ftmax]. Choose t > 0 and divide (0,-ftmax] into t subintervals,

Ij, each of equal width Ar = — Let X{ = i A r,i = 1 , . .
. ,

t then

fi = (0, X \ ]
,I2 = (xu x 2 ]

. ..,It = {x t-i,x t \

denote the subintervals. Let

. .
.

,

R\mi denote the circles given by the intersection of Z with spheres with R s 6 R

i?2 i? • • • ,
R2m 2

denote the circles given by the intersection of Z with R 8 6 I2
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denote the circles given by the intersection of Z with R 8 € It
DC JDC

. . . , J^tmt

and let np = mi + m 2 + . . . + rn t .

Form histogram estimates for g(x) and f{x), respectively as follows,

f
—L— # spheres with radii in L x C Ij

^no(x) = <
otherwise

0no(s) =_ J noArH^/ € Ij } X € Ij

0 otherwise

Similarly define

z. w = J
e w x €

np
'

[ 0 otherwise

Then <7no (x) and fnp {x) are histogram estimates of the densities of G(r) and

F(r), respectively. One can write

fnp (x) = ——EEE € Ij\i[x € /j]
nP ^ r

j= l .=i fc=i

Taking expectations and letting Rl(i) be the spherical radius associated with

Rc
ik . Let T the sigma field generated by the random variables Rc

tk ,
Rs

ik ,
z, A: >

1.

t t m,- I

j=i i=i k= l
nP ^ r

‘ * mi
1 |

R'k(i) )
- T(xj

| j?l(0 )

- EEE £
[

j=l ,=i fc=i
nP

t m,-

Ar
/[a; € Ij

= E E Esi-]
r( *'- 1, *tw

l
i=i i>i-i it=i

nP

= E E b[L x

J=1 «>J-1
Up

^k(i) \f(^k(i))
2

” :7[X G /j] +0(1)
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Observe that f(y )
= X

y\/y2 -x 2
is decreasing in y. Giving

t
1

£[/np(*)|.F] < E E
• i : i i i if'nj=li>j-lk=l ,VP Xi

. rrii
,

x

j= 1 «>j-l
nP Xiyjx} ~

i\Jx]
~

-I\x € /j] + o(l)

= E E st?1
]

-7[x € Ij] + o(l)

X^

= E E S[^h,
J=h>J-l

12 UP X
t \J

X

2 -
I[x £ Ij] + o(l)

x*

= rEE s[?i
X

nP J=1 ^ Xi\fx? —
-I[x € /j] + o(l)

X-1

< -EE X

nP j= 1 »>j—

1

Xx\Jx] ~
-I[x € Ij] + o(l)

I2 \—' v—' 2no I x
r , , \= -EE — •— =I[* € /,] +0(1)

nP j=l i>j- 1
^ — X'

no,- x1
. y yNV2R j— i ,>j_i ^/xf — x 2

E E n 0 ,
n0 x

NV2R
j=l i>J

_ 1
n 0 /

3 — x 2

/[x € /j] + o(l)

7[x € 7j] + o(l)

= ?EE no, ^

j=i ,>j-i
no y^x? — x 2

1 yy
noi X

R

I[x € /j] + o(l)

j=i «>j-i
n o A r xjx] — x 2

I[x 6 7j] -f- o(l)

= iE E 2n0
(z.)

^ J=1 i>j-l

-I[x £ /j] + o(l)

1 ^ ( x
X

jL, 9m^i)-7==—^
J=1 y Xf - X 2

J=1

sM 1

E 7[x € 7j] A r + o(l)

l

-JU Jx

X

9 Jx yjy 2 - x‘

-:9{y)dy
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as / — oo and t —> oo, by the strong law of large numbers. So we have the

inequality
1 f°° x

f(x) = lim lim /„„ < - /
-==g{y)dy.

/-oo (-*oo v
jj, Jx yjyl—x 2-

Similarly
,
a > inequality holds

4 The Abel Integral Equation

In the previous section we observed that an integral relationship exists be-

tween f(x) and g(x) the densities of the circular radii and the spherical radii,

respectively, of stereology, viz

9(x)

yjx2 — y
2
dx ( 2 . 1

)

where m
inversion

— Io° xg(x)dx is the mean spherical radius, and R T

.
—2xm

g(X )
= ——

/7T J x

d
r f(y)

X \fy
2 - X 2 dy y

12m d 1

}dy (2.2)

L7r dx Jx y/y
2 — x 2

f{dy )

= oo. By

see Hochstat, page 41.

The problem is to use equation (2.1) to estimate g(x) based on the ob-

served data 2/i , 3/2 ?---•> Vm the radii of the n circles on the test plane. There

are several ways to use the data and the integral equation (2.1) to get an

estimate of f{x). Perhaps the simpliest approach is the parametric, where it

is assumed that

g(x) = g(x,0) 9 € Rk

where g is known completely except for 9. For example, it may be assumed

that g(x
, 9) is either normal, lognormal, gamma, etc. The problem is reduced

to estimating the parameters and using (2.2). As an example Dehoff(1965)

used a lognormal distribution.

g(x,9)=-T==— exp{-V
D(j) //

)

2

} x>0
V 2 tt ctx l <y

11



Another approach is the nonparametric approach, where the densities

f(x )
and g(x) are estimated by histograms and the integral is approximated

by a sum. This method is called the finite difference or method of moments
approach.

Divide (0,a] into subintervals (histogram bins) of width A r, and let I\ =

(0, ri], I2 = (ri,r2 ], . .
. , Ik = (rjfc-i, rjfc] denote the bins, let

fi
——(number of
A r,

1

/ f(y)dy
Jr

yj € /»}

Now use any quadrature approximation on the integral in (2.1) i.e.

9(x)

y/x2 — y
2
dx

K
a ij9j

3= 1

i = 1,2, where K is the number of intervals in the quadrature

approximation, a tJ is the quadrature weights and fj is the value of g at the

nodes. We get a system of equations.

K
fi = aij9j

3= 1

K

3= 1

K
fk — ^£2 ak393

3= 1

These can be written in matrix form as

where

f = Ag

'/l

I

^

CCi

K5

1

/2 :

Jk

= A

. 9K .

12



where A =
(
a^j

)
is the kxK matrix of quadrature weights. For example

consider the approximation where one takes

K
g(x )

= £ 9jl[x = Rj]

j=i

where R2 ,
. .

.

,

Rk are a sequence of real numbers, and then gj's are

a sequence of constants. One may assume that the R
}
's are a sequence

of discretized values that the spherical radii can take on and the gf s are

the unknown frequencies of spherical radii taking on the value Rr This is

the Saltikov(1967) model where he assumes that the spherical radii are dis-

cretized into K species R x , . .
. , Rk- Substituting into the integral in (2.1)

gives

so that

Recall,

L
a g{z)

y \Jx2 - y
2 = [7zh?^ g’Ilx = R’

]d

= % gir7^7I[x = Rj]d

K
a r°

= £ - -ft-
/ I[x = Rj\dx

K
= £ 9j

-Av < Rj < 00]

K
f{y) = £ 7=

—

Ay < Rj < °o]

fi = r f(y)dy
J ri-

1

K

= f £ 7= Ay < Rj < oo]dy
Jri~ i 171 j=i yjR) - y

2

= £ 7/ 7=—fly <R,< °°¥v
j=i 171 Jr{- 1 \JRj - y

2
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1

= (l/2)/ ‘ r
1

I[y < oo}dy

U m Jr'-y \[W~y

= yiL [
R] - r

' J_
m JR)-rJ y/t

j=i

So that,

a.j = ^R2j~ rl ~ \J
R)~ rl-\

The matrix A is upper-triangular, ie

dij = 0 if r, > Rj

So, if K = k it is very simple to solve the matrix equation by successive elim

ination, starting with the largest spheres. It is often convenient to choose

K = k then the solution is unique.

Other approximations can also be considered. For example, one may
partition the range of g into subintervals, (x,_i, £;], i = 1 , ... if, and in each

subinterval approximate g with the polynomial

K

pj(y ) = XI a ijV
J < y < x

»

i—0

the coefficients depending on the data.

The histogram methods require grouped data. A way to avoid this is to

rewrite the integral equation (2.1) in terms of the cumulative distribution

function. By multiplying (2.1) by (x 2 — z 2
)

-1 / 2 and integrating x from z to

infinity one gets

(2.3)

Note that by letting z —> 0 gives

_ 2n r°° F(dx)

TT Jo X
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a method to estimate fi.

Let Fn(x )
denote the empirical distribution function

-t{Vi < x)
n

- J [yi ^ x
\

n hi

Then substituting F„(x) for F(x) in (2.3) gives the estimate

1

This appears to be a good estimator but suffers several defects, for example

G estimates a nondecreasing function, but

lim G(x) = — oo
*-*Vi

Another nonparameteric method is the product-integration technique. An-

derssen and Jakeman(1975, 1975a) pubhshed several papers on its use. The
technique is used to circumvent the problem of the integrand in (2.1) having

a singularity. The method smooths out the sample distribution function us-

ing a localized Lagrange interpolation and then the singularity is integrated

out analytically.

5 Summary of Methods

The histogram( finite difference) methods provide poor estimates from a sta-

tistical and numerical perspective. Problems occur because the integrand

has a singularity and because the data are noisy. Watson(1971) discusses

the poor statistical properties (such as infinite mean squared error). Ander-

ssen(1976) shows that if A is the histogram bin width then a pertubation

in a profile frequency is locally amplified by a factor of the order T into an

estimated sphere size frequency.

15



One way to overcome the noisy data problem is to use methods for solving

the ill-posed inverse problem. Nychka et al. (1984) use these techniques to

provide spline estimators.

Product integration and spectral differentiation appears to be mathemati-

cally superior to finite difference methods. But, for practical purposes they

are mathematically complex, especially spectral integration.

Of course the problem with the parametric approach is having to commit

oneself to a precise form of g(x), especially in those situations, very com-

mon in biology, in which g(x
)
may be a mixture of an unknown number of

components. Furthermore, one needs good parameter estimation techniques.

Most of the comments in this section are taken from the paper of Cruz-

Orive (1982).
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